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ABSTRACT

A single software framework is introduced to evaluate numerical accuracy of the A-grid (NICAM) versus

C-grid (MPAS) shallow-water model solvers on icosahedral grids. The C-grid staggering scheme excels

in numerical noise control and total energy conservation, which results in exceptional stability for long

time integration. Its weakness lies in the lack of model error reduction with increasing resolution in

specific test cases (especially the root-mean-square error). The A-grid method conserves well potential

enstrophy and shows a linear reduction of error with increasing resolution. The gridpoint noise mani-

fests itself clearly on A-grid, but much less on C-grid. We show that the Coriolis force term on C-grid

has a larger error than on A-grid. To treat the Coriolis term and kinetic energy gradient on an equal

footing on C-grid, we propose combining these two quantities into a single tendency term and com-

puting its value by a linear combination operation. This modification alone reduces numerical errors but

still fails to converge the maximum error with resolution. The method of Peixoto can solve the

maximum-error nonconvergence problem on C-grid but degrades the numerical stability. For the

steady-state thin-layer test (0.01 m in depth), the A-grid method is less susceptible than C-grid methods,

which are presumably disrupted by the Hollingsworth instability. The effect of horizontal diffusion on

model accuracy and energy conservation is shown in detail. Programming experience shows that soft-

ware implementation and optimization can strongly influence computational performance for models, al-

though memory requirement and computational load of the two schemes are comparable.

1. Introduction: Model accuracy and
computational efficiency for exascale computing

Numerical algorithms used for atmospheric general

circulationmodeling have undergone constant evolution

over the past half century (e.g., World Meteorological

Organization 1969; Williamson 2007; Lauritzen et al.

2011). Early models, such as the Mintz–Arakawa model

(seeGates et al. 1971), used the finite-differencemethod

(FDM) on a latitude–longitude grid; both the Global

Forecast System (GFS) atmospheric model (Sela 1980)

and the European Centre for Medium-Range Weather

Forecast’s high-resolution model (Simmons et al. 1989)

used spectral methods (e.g., Machenhauer 1979). Recent

models, suchas theFinite-VolumeCubed-SphereDynamical

Core (FV3; Lin 2004), the Model for Prediction AcrossCorresponding author: Yonggang G. Yu, yonggang.yu@noaa.gov
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Scales (MPAS; Skamarock et al. 2012), theNonhydrostatic

Icosahedral Atmospheric Model (NICAM; Satoh et al.

2008), the Nonhydrostatic Icosahedral Model (NIM;

Lee and MacDonald 2009), the Flow-Following Finite-

Volume IcosahedralModel (FIM; Bleck et al. 2015), and

the Icosahedral Nonhydrostatic model (ICON; Wan

et al. 2013; Zängl et al. 2015), have adopted gridpoint

models based on the finite-volume (FV) scheme. In

addition, the spectral-element method (e.g., Maday and

Patera 1989) has been implemented in atmospheric

models (e.g., Taylor et al. 1997; Giraldo et al. 2013; Choi

and Hong 2016). Considering ambitious goals, such as

climate simulation at 1-km scale (Voosen 2018) and

real-time global weather predictions at subkilometer

resolution with extension capability for subseasonal and

seasonal predictions, today more than ever, stringent

requirements are imposed on model accuracy, stability,

scalability and suitability to run efficiently on millions of

parallel computing units, a likely characteristic of future

exascale machines.

Despite having at best a first-order accuracy with re-

spect to the control volume [i.e., ;O(N21), where N is

the number of quasi-uniform grid points (or grid cells)

on the sphere], the finite-volume method (FVM) has

been a mainstream choice for modeling on quasi-

uniform grids at high resolution owing to its simplic-

ity and computational efficiency. In contrast, spectral

models are more accurate but limited by computational

efficiency especially on large-scale parallel machines.

The hindrance lies in that Legendre transforms and

Fourier transforms therein needs global information

from each latitude, but its collection is inherently slow

on distributed memory systems [see recent progress in

O’Neil et al. (2010) and Wedi et al. (2013)]. Gridpoint

methods, such as the icosahedral-grid-based FVM ap-

proach, provides a compromise between accuracy and

computational cost—having low order of accuracy yet

free from the costly global transformations between real

and reciprocal space. Advantages of icosahedral models

include the lack of pole-problems, quasi-homogeneity in

cell volume, the benign transition from the 12 singular

pentagons to their hexagonal neighbors and beyond, and

straightforward algorithms for grid generation, optimi-

zation, stretching, and variable resolutions (e.g., Du

et al. 1999; Tomita et al. 2001; Wang and Lee 2011;

Miura and Kimoto 2005; Rauscher and Ringler 2014).

Having access to higher resolution via FVM could

potentially put an end to parameterizations of subgrid

dynamic processes that were required before (e.g., Satoh

et al. 2008). However, this advantage needs to comewith

meticulous design of numerical algorithms for accuracy

and stability purposes, especially in curvilinear space.

Take surface topography as an example. Given the same

complex terrain resolved at meter resolution, according

to fractal theory (Mandelbrot 1982), the nonlinearity

exhibited at subkilometer scales will be much stronger

than at 100-km scales. Hence, the existence of pro-

nounced nonlinearity in the dynamic equation at high

resolution poses a strong challenge to the stability and

accuracy of FVM, even if satisfactory performance

had been achieved for idealized test cases (e.g.,

Williamson et al. 1992).

In our view, because of the complexity of FVM for

irregular grids on sphere, model stability can hardly be

separately discussed without studying accuracy issues.

For example, vector field interpolation on sphere as well

as vector field reconstruction from its normal compo-

nent are ill-defined mathematical problems, yet they are

needed by FVM (e.g., Peixoto and Barros 2014). How

robustly a model can withstand a long time integration

without resorting to explicit numerical damping yet still

producing reliable results appears to be an important

test stone in our opinion, even though it is admitted that

numerical diffusion (or damping) is a part of the model

numerical scheme. In this paper, we will discuss sepa-

rately simulations due to the pure FV algorithm design

and the effect of further imposing explicit diffusion.

Shallow-water model solvers based on icosahedral

geodesic grids come in many flavors. Some of the early

works include Vestine et al. (1963), Sadourny et al.

(1968), Williamson (1968), and Cullen (1974). These

solvers can differ in variable-staggering schemes, local

map projections (e.g., Phillips 1973), and variable in-

terpolation methods. Among the variable-staggering

schemes introduced by Winninghoff (1968) and Arakawa

and Lamb (1977), the A-grid scheme refers to the

method in which prognostic variables are collocated at

the center of a grid cell, while in the C-grid scheme, only

mass field variables reside at the cell center while the

normal components of velocity are specified on cell

edges. Examples of software implementations for FV

icosahedral schemes include models on A-grid (NICAM,

NIM, and FIM), C-grid (MPAS), Z-grid, ZM-grid, and

SB-grid (Randall 1994; Heikes and Randall 1995a;

Ringler and Randall 2002; Xie 2019; Miura 2019), and

others (Stuhne and Peltier 1996, 1999).

To design and develop more advanced FV schemes, it

is important to understand in detail the current available

methods, such as the A-grid scheme from Tomita et al.

(2001) and C-grid schemes from Thuburn et al. (2009)

and Ringler et al. (2010) (also known as the TRSK

scheme). To allow for a pure algorithm level comparison

related to FV, we undertake a software implementation

task, programming independently the grid generators,

FV algorithms, and test cases. This approach avoids

biases introduced in different numerical damping, time
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integration methods, and qualities of icosahedral grids.

We also avoid methods to advect potential vorticity as

an independent dynamic constraint, since our goal is to

compare the effect due to the basic grid level algorithm

design alone. We test model accuracy and numerical

stability for very long integration times far beyond

standard test requirements, which reveals some impor-

tant numerical issues in both A-grid and C-grid. In this

sense, our study exemplifies the current status of the

FVM for nonlinearity and long time integration, which

is a necessary step to search for improved algorithms.

We wish to stimulate research interest in numerical al-

gorithm development for the nonlinear dynamics on the

sphere using FVM. This work is part of the Exascale

Project at NOAA/ESRL/GSL, which seeks to evaluate

and quantify scientific accuracy and computational ef-

ficiencies of numerical approaches. One of our ongoing

efforts is to evaluate and compare the computational

efficiency of different shallow-water model schemes,

especially the communication performance at cloud-

permitting scales (3 km) in global models.

The paper is organized as follows: section 2 gives an

overview about technical details on variable staggering

and grid generation, which is followed by simulation

results on five Williamson test cases and a numerical

operator accuracy test in section 3. In section 4, we

show a new method to reduce the systematic error on

C-grid, which combines the Coriolis term with kinetic

energy gradient for a linear combination operation. Two

numerical tests are performed to reveal pros and cons of

our method, which are shown in conjunction with the

method of Peixoto (2016). The effects of diffusion on the

A-grid and C-grid simulations are compared in detail in

section 5. Section 6 shows our preliminary work on

software optimization and parallelization of the A-grid

and C-grid codes. Conclusions from this study are drawn

at the end.

2. Overview of the A-grid and C-grid staggering
methods and some technical details in the code

The FVM in conjunction with the icosahedral grid is

used to solve the shallow-water model on the sphere,

which comprises the continuity andmomentumequations:

›h*

›t
52= � (h*V) and (1)

›V

›t
52( f 1 j)k3V2=

�
1

2
V2 1 g(h*1 h

s
)

�
. (2)

Here t denotes time and we have reserved subscript t

to indicate the tangential component of a vector (e.g., ut
is the tangential velocity component, which plays an

important role in formulating the C-grid scheme). The

symbol h* represents the fluid depth, V is the velocity

vector, g is the gravity, and hs isthe underlying topog-

raphy; f 5 2V sinu is the so-called Coriolis parameter,

and j 5 k � = 3 V is relative vorticity. The FVM is used

to approximate spatial derivatives of the fields. We use

the fourth-order Runge–Kutta method (Press et al.

1992) to evolve the flow in time. The time steps we

choose for the simulation lie between those of NICAM

andMPAS [i.e., 480, 240, and 120 s for grid level 4, 5, and

6, respectively]. This set of time steps is used for both

A-grid and C-grid calculations.

Winninghoff (1968) and Arakawa and Lamb (1977)

introduced several schemes to stagger field variables (h

and V). Among them are the A-grid scheme with

prognostic variables (h andV) positioned at cell centers,

and the C-grid scheme in which the two prognostic

variables are h and the normal component of the ve-

locity un, with the former located at cell centers and the

latter centered on cell edges. In the A-grid scheme,

prognostic variables at cell centers are interpolated to

edges and then used in line integrals to compute gradi-

ent, divergence, vorticity, and so on. An example is

shown in Fig. 1a for vector interpolation on a square

grid, where a vector positioned at the middle of an edge

is obtained by averaging values from two adjacent

square centers. In the C-grid scheme, since the Coriolis

force term, 2( f 1 j)ut, is needed in the dynamic equa-

tion for un, either the tangent ut or the whole Coriolis

force term has to be interpolated from prognostic vari-

ables un and h. The interpolation method would couple

the icosahedral grids, the variable staggering pattern,

and the dynamic equations. On a square lattice with

C-grid staggering (Fig. 1b), the tangential vector com-

ponent ut on an edge is derived by averaging the normal

vector component un from four adjacent edges [ut 5
0.25(u1n 1 u2n 1 u3n 1 u4n)]. The interpolation method

on icosahedral grids can be viewed as an extension from

square grids. For the A-grid, velocity on an edge is de-

termined from a weighted average of four hexagon

centers (see formula in Fig. 1c). In the C-grid scheme, ut
on an edge is written as a linear combination of un values

from 9 or 10 adjacent hexagon edges (see formula in

Fig. 1d). The FV formula for calculating a divergence

field through line integrals is also shown in Fig. 1.

More details on the linear combination coefficients

for velocity interpolation and the FV discretization

can be found in previous publications on the method

for NICAM and MPAS (Tomita et al. 2001; Thuburn

et al. 2009; Ringler et al. 2010).

Some background information on icosahedral grids

is provided here to facilitate understanding the termi-

nology of the grid level and resolution to be used in
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the following section. A computer code is written to

generate icosahedral grids that incorporates the spring

dynamics method for theA-grid (Tomita et al. 2001) and

the centroidal Voronoi tessellations (CVT) method

from Du et al. (1999) for the C-grid. Grid quality is

strictly controlled. Force on each grid point is converged

to 1026–1027 using spring dynamics [Eq. (6) in Tomita

et al. 2002]. Ratio of the maximum gridpoint shift dis-

tance from two consecutive bisection procedure relative

to average gridpoint distance is set to 10213 for the CVT

grid. The velocity interpolation coefficient Wee0 on the

C-grid is calculated following Thuburn et al. (2009). The

published results from Tomita et al. (2001) and Ringler

et al. (2010) are well reproduced, fulfilling the require-

ment for a side-by-side comparison. The relationship

between the number of icosahedral grid points or hex-

agonal centersN and the grid level g isN5 103 4g 1 2,

and the grid resolution as a function of grid level is

2pa/(10 3 2g21) ’ 4003.1 (km)/2g21, where a is Earth’s

radius (6371.2 km). For example, at grid level 5 (G5), the

number of icosahedral grid points is 10 242 and the

nominal grid resolution is 250.2 km.

3. Williamson test cases: A-grid (Tomita et al.
2001) versus C-grid (TRSK scheme)

Five representative test cases (TC) were selected from

the standard test set devised byWilliamson et al. (1992).

Among them, three have analytic solutions: simple

steady zonal flow (TC2), flow with compact support

(TC3), and forced nonlinear system with a translating

low (TC4). The other two nonlinear cases include the

mountain-wave test (TC5) and the Rossby–Haurwitz

wave test (TC6). TC1 is not performed because of

its simplicity, which tests solvers only for advection

[Eq. (1)] but not for the Euler equation [Eq. (2)]; TC7 is

not performed because of lack of public access to the

filtered initial conditions without normal modes. The

initial velocity fields for TC2 and TC3 contain low-order

spherical harmonics, while the other cases (TC4–6)

involve terms with high-order spherical harmonics,

which are prone to generating high wavenumber signals.

The numerical advantage and deficiency of the A-grid and

C-grid staggering schemes were exposed by long time in-

tegration without numerical damping. All other parame-

ters were kept identical for comparison during simulations,

such as time step and time integration method. The effect

of numerical diffusion on theA-grid and C-grid results will

be discussed in section 5.

a. Large-scale zonal geostrophic flow (TC2)

In TC2, the steady-state zonal flow is balanced by the

geostrophic height field satisfying the shallow-water

equations:

V5v3 r and

h5 h
0
2

1

g

�
1

2
1
V

v

�
(v � r)2 , (3)

with jjrjj2 5 a (Earth radius),v andV being the angular

frequency vector of the zonal flow and the sphere, re-

spectively, and h0 being a constant (e.g., 3 km). Since

zonal velocity u ; cosu[Y0
1 (u, l)] and depth field h ;

cos(2u)[;Y0
2 (u, l)], both functions involve at most

second-degree spherical harmonics. This test measures

the model skill in controlling numerical noise.

FIG. 1. Illustration of the finite-volume algorithm applied to (a) the latitude–longitude grid using the A-grid staggering scheme, (b) the

latitude–longitude grid using the C-grid staggering scheme, (c) the icosahedral grid using the A-grid staggering scheme, and (d) the

icosahedral grid using the C-grid staggering scheme. Note that the Ûn direction can be either n̂ or 2n̂ and t̂ is the tangential direction.
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So far only the C-grid energy conserving scheme

by Ringler et al. (2010) has been shown to withstand a

1-yr simulation in TC2 without explicit damping; the

A-grid scheme from Tomita et al. (2001) was shown to

withstand a 90-day integration without damping. A 1-yr

simulation at various grid resolutions was run to verify

the previous results. Striking in Fig. 2a is the C-grid error

norm in the depth field [L‘(h) and L2(h)], remaining

steady over a year with constrained fluctuations when

tested at grid level 5 (G5; ;240-km resolution). The

error norms from the A-grid method begin to diverge at

;200 days, and their fluctuation amplitude is larger than

the C-grid results. In the original work by Tomita et al.

(2001), the model was run for 90 days without damping;

here we are able to maintain numerical stability for

200 days without explicit damping, which is likely due to

minor coding and grid optimization differences. On the

A-grid, the spring dynamics method used for grid opti-

mization plays an important role in reducing numerical

noise, and the simulation results would be worse had

other grid generation methods been used, such as the

standard grid or the recursive gravitational-center grid

[not shown here; see Tomita et al. (2001) for reference].

Figure 2b shows the convergence rate of these error

norms with increasing grid resolution from grid level 4

(G4; 480-km resolution) to grid level 7 (G7; 60-km res-

olution) at the end of a 50-day simulation. In the A-grid

method, both L‘(h) and L2(h) norms decrease linearly

with the number of grid points. On the C-grid, this is true

only for the L2(h) norm. The L‘(h) norm barely de-

creases with grid resolution. This is a known imperfec-

tion in the TRSK scheme. Some discussion will be given

in section 3f. Also shown in Fig. 2 are two reference lines

illustrating first-order [O(N21)] and second-order ac-

curacy [O(N22)] (N being the number of grid points or

hexagonal cells). Note that since N1/2 ;2pa/(Dx) on ico-

sahedral grids (a being Earth’s radius), the O(N21) and

O(N22) are equivalent to O(Dx2) and O(Dx4), respec-
tively, in terms of the one-dimensional latitude–longitude

grid length. Here we adopt the O(N21) notation. Both

A-grid and C-grid methods show at best first-order ac-

curacy, because of the FVM used on an irregular ico-

sahedral grid, which is consistent with the previous study

(Tomita et al. 2001). Yet, the A-grid shows faster L2

norm convergence rates than C-grid beyond grid level

G5. The error convergence rates with increasing number

FIG. 2. Test case 2 (TC2: steady-state geostrophic flow): numerical accuracy and time in-

tegration stability for the A-grid and C-grid schemes without explicit numerical damping.

(a) Time evolution of the L2 and L‘ norms for depth up to 365-day integration for the two

staggering schemes. (b) The convergence rate of the L2 and L‘ norms with respect to the

number of icosahedral grid points (or the gridpoint level, G4–G7) at the end of the 50-day

integration. Reference lines shown in black are for the first-order accuracy [O(N21)] and

second-order accuracy [O(N22)], with N being the number of icosahedral cells.
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of grid points for other test cases are expected to be

worse than for TC2, since TC2 is among the least

nonlinear test cases. Therefore, we will not show the

O(N21) and O(N22) reference lines in figures for

other test cases.

To understand the nature of the nondecaying L‘(h)

norm, we plot in Fig. 3 the probability density function

(PDF) of the pointwise relative error norm, which is

defined as dh/hmax
T or jhcal 2 hT j/hmax

T , where hcal, hT, and

hmax
T stand for the calculated value, theoretical value, and

theoretical maximum, respectively. Important features

shown at both resolutions (grid level G5 and G7; Fig. 3)

are the persistent long tail in the C-grid PDF, and the

compact plateau-like PDF for A-grid except the abrupt

l-shape spike behavior close to the tail with a sharp

dropoff at the end. This means that the errors for the

A-grid method are confined to smaller values than the

C-grid method, and it is clearly seen at high resolution

(grid level G7) in Fig. 3b.

b. Steady-state nonlinear zonal geostrophic flow with
compact support (TC3)

The initial condition for the flow with compact sup-

port in TC3 is shown in Fig. 4a, where the sharply con-

fined zonal wind velocity (red line) balances the sharp

reduction in geopotential at northern midlatitudes.

‘‘Compact support’’ refers to the stagnant (zero velocity)

portion of the fluid in the Southern Hemisphere (h 5
3000m). The steady-state solution in TC3 permits an

easy measure of the error norms for the two gridpoint

methods. Like in TC2, the A-grid method is effective in

controlling error norms in TC3 at resolutions fromG4 to

G7—the L2 and L‘ norms for the height field decrease

linearly with increasing number of icosahedral grid points

(red lines in the log–log graphics in Fig. 5a). In the C-grid

method, only the L2(h) error norm is consistent with the

first-order accuracy characteristics of the FVM; theL‘(h)

norm shows clear reduction from grid level G4 toG5, but

not at higher resolutions (above G6, see the blue squares

in Fig. 5a). In a previous study by Stuhne and Peltier

(1999), an increase in the L2(h) and L‘(h) errors was

observed from grid level G6 to G7 due to numerical in-

accuracy. In the work byHeikes andRandall (1995a), the

error norms inL2(h) andL‘(h) were only reported at G5

andG6 resolution. Their convergence rate with respect to

the number of grid points is less than first order. TC3

results were not shown in Ringler et al. (2010).

c. Forced nonlinear system with a translating
low (TC4)

TC4 is less frequently demonstrated in gridpoint

models than in spectral models [e.g., it was omitted in

FIG. 3. Probability density function of the relative error in fluid depth (jh2 hTj/hmax) in test

case 2 due to the A-grid and C-grid schemes at two different grid levels: (a) G5 (250-km

resolution) and (b) G7 (60-km resolution).
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Tomita et al. (2001) and Ringler et al. (2010)]. Heikes

and Randall (1995a) only briefly covered this case,

without showing its truncation error convergence with

increasing grid resolution. In TC4, two westerly jets with

zonal velocity u5 20 sin14(2u) m s21 centered at latitude

u 5 6p/4 are superimposed upon a translating low

pressure center, which has a period of 23.17 days.

Figure 4b shows the initial condition for depth and zonal

velocity across the l 5 0 plane (08 longitude) as a

function of latitude. The vortex circulation is manifest

from the dip in the fluid depth field (the minimum at u5
p/4) and a sign change in the superimposed velocity

direction near u 5 p/4 (Fig. 4b). Simulations were run

for 6 days with u0 5 20ms21, and the contrast in the

error analysis between the two methods is shown in

Fig. 5b. In the C-grid method, both L2(h) and L‘(h)

FIG. 4. Initial conditions for (a) test case 3 and (b) test case 4: the geopotential height h and the

zonal velocity u (when the longitude l 5 0 in TC4) as a function of latitude u.

FIG. 5. The L2 and L‘ error norms for the h field (fluid depth) as a function of gridpoint

resolution for (a) test case 3 and (b) test case 4 at day 6.
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error norms fail to decrease with grid resolution, which

is a problem in the C-grid scheme and will be discussed

in section 3f. Such problems do not arise in the A-

grid method.

Note that recent simulations using a modified

TC2 with a steady thin-layer also revealed the non-

convergence problem of the TRSK scheme at high res-

olution for both L‘ and L2 norms (see Fig. 9 in Peixoto

2016), which is consistent with our results here on

TC4 (Fig. 5b).

d. Zonal flow over an isolated mountain (TC5):
Strongly nonlinear test case

The spatial gradient term acting on the mountain

height field in TC5 is a major source generating non-

vanishing high wavenumber components in Fourier

space. Simulations from the A-grid and C-grid methods

are compared with the baseline solution from the

spectral transform model with T511 spectral truncation

(Jakob et al. 1993). The standard test with a 15-day in-

tegration (Fig. 6, left column) indicates the A-grid

and C-grid results are comparable, except that the po-

sition of the 5900-m isoline (near equator) in the A-grid

model appears closer to the baseline solution than does

the C-grid. After 90 days, the height field from the ini-

tial zonal flow breaks into multiple troughs (Fig. 6, right

column). There remains some correspondence in the

trough locations between these threemethods. TheA-grid

solution becomes noisy on each grid point, although re-

semblance to the baseline still exists. The C-grid result is

free from notable gridpoint noise, but some large errors

appear near the North Pole. This is likely due to the

phase mismatch between the velocity and the height

field equations during the time integration, since we did

not implement the anticipated potential vorticity method

(Sadourny and Basdevant 1985), which was shown to be

FIG. 6. Test case 5: flow over an isolated mountain. Shown is the height field at (left) 15 and (right) 90 days calculated at grid level 6

(120-km resolution) using algorithms based on (top) the A-grid, (middle) the C-grid, and (bottom) the spectral transform model, re-

spectively, without explicit numerical damping.
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useful in improving the C-grid results for TC5 (Ringler

et al. 2010), although no theoretical proof has been

provided.

The L2(h) and L‘(h) norms generated from the A-

and C-grid were shown in Fig. 7, where we find sublinear

convergence [(;O(N21)] in error norm with respect to

the number of grid points. Our C-grid results shown in

Fig. 7 are equivalent to results from Fig. 8 in Ringler

et al. (2010) [e.g., at G6 resolution, the L2(h) and L‘(h)

norms from our study are 2.0 3 1024 and 1.5 3 1023,

respectively, which agree well with their results, 3.5 3
1024 and 2.0 3 1023]. Furthermore, we calculated the

fractional error for total energy and potential enstrophy,

defined as the ratio of the absolute deviation from

its initial value (see Fig. 8). Remarkable total energy

conservation results are obtained from the C-grid

scheme, the error being about a factor of 1023 smaller

than the A-grid fractional error in energy (Fig. 8a).

However, for potential enstrophy, the C-grid energy-

conserving scheme gives slightly worse results than the

A-grid method. Our results are consistent with Fig. 17 in

Tomita et al. (2001) and Fig. 9 in Ringler et al. (2010).

Moreover, as an illustration of a faithful implementation

of the C-grid scheme in our software, we show in Fig. 9

the relative error in potential enstrophy as a function

of time calculated for several grid resolutions (G4–G7),

which is slightly better than the errors shown in Fig. 9

of Ringler et al. (2010) (i.e., error from this imple-

mentation at day 15 is one-half of their results at every

resolution, which we ascribe to minor difference in nu-

merical coding).

Information from Figs. 2, 5, and 7 show that for the

C-grid the L‘(h) norm convergence with respect to the

number of icosahedral grid points exhibits sublinear

behavior [worse than O(N21)] in TC5, but fails to de-

crease in TC2–4. We realize that aliasing errors in the

discrete Fourier transform when interpolating a scalar

field (e.g., h) from the original spectral grid (uniform

longitude and Gaussian latitude) to the irregular icosa-

hedral grid should not be neglected in the case of T511

resolution. We suspect it is the error cancellation be-

tween the aliasing error and the intrinsic error in the

C-grid scheme that yields the sublinearly decreasing

behavior of the L‘ norm with grid resolution in TC5.

The trueC-grid error for TC5 is still unknown. Therefore,

we recommend using TC2–4, which have analytical ref-

erence solutions, to study numerical error convergence

with respect to grid resolution.

e. Rossby–Haurwitz waves test (TC6): Weakly
nonlinear test case

Ananalytical expression for a linearized two-dimensional

vortex equation on sphere for a nondivergence flow was

derived by Haurwitz (1940), which, of course, is not a

solution for the shallow-water model on sphere. It was

used as an initial condition in the previous simulation by

Phillips (1959). More thorough studies showed that the

wavenumber R 5 4 pattern can be relatively stable

until a breakdown happens between 25 and 80 days

depending on the specific model being used (e.g., spec-

tral methods or FVM; Thuburn and Li 2000). In our

work, R 5 4 is the parameter that we used. A compar-

ison between theA-grid and C-grid solutions is shown in

Fig. 10 using results from the spectral transform model

with T511 resolution as the baseline (Jakob et al. 1993).

In the 14-day standard test (Fig. 10, left column), the

A-grid results at G6 resolution contain an erroneous

deviation (a mild trough) in the 8400-m isoline shape,

particularly at 1108E and 708W. The C-grid results are

more consistent with the baseline.When simulations are

extended to 60 days, only the spectral model retains the

wavenumber R 5 4 character with nodes and peaks in

the height field located on the equator. Note that in-

sufficient wavenumber cutoff, such as T42 in the spectral

model (t 5 600 s), will produce spurious solutions at

60 days, as shown in Fig. 6.11(b) of Jakob et al. (1993).

Without using numerical damping, both gridpoint

models fail to preserve the Haurwitz wavenumberR5 4

structure at 60 days; instead, the peaks in the height

field migrate off the equator. Fast nonlinear oscillations

appear in the A-grid solution on each isoline due to

FIG. 7. The L2 and L‘ error normals for the h field as a function of

gridpoint resolution for test case 5 after 15-day integration.
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gridpoint noise contamination. These spurious oscil-

lations are absent in the C-grid staggering, as also

seen in TC5.

f. Accuracy in computing the Coriolis force term on
the sphere

Next we conduct an experiment to test the accuracy of

each leading component in the tendency function [right-

hand side of Eq. (2)] for the A-grid and C-grid schemes.

The chosen test functions are h 5 h0 cos(ml) cos4(nu)

and V 5 u0 sinl=[cos(ml) cos4(nu)] (Heikes and

Randall 1995b) with m 5 n 5 3. The analytical expres-

sions for their spatial derivatives are given in appendix B

and used as a baseline to reveal the numerical errors

fromFVM. Figure 11 displays on the sphere the absolute

errors from the two methods for a few quantities related

to spatial derivatives: height gradient, divergence, vor-

ticity, and the Coriolis term. The error for a vector is

defined as the vector two-norm at each grid point

(appendix A). For the C-grid, the normal velocity (un)

staggered at the middle of the edge can be used conve-

niently to calculate divergence (flux) and vorticity (cir-

culation). In addition, the CVT grid in the C-grid

scheme provides convenience for calculating the height

(pressure) gradient term using FDM. Here, we find

similar yet still distinguishable accuracy between the

A-grid and C-grid methods in computing =h, = � (hV),

and =3 V (Fig. 11) (e.g., at local scale the gradient and

divergence terms from the C-grid method are slighter

more accurate than the A-grid results). For the Coriolis

term ( f1 z)k3V in the momentum equation, however,

FIG. 8. Test case 5: Time evolution of the fractional error in (a) total energy and

(b) potential enstrophy for the two schemes up to 15 days; TE and PE stand for total energy

and potential enstrophy, respectively, at the current time, and TE0 and PE0 stand for total

energy and potential enstrophy, respectively, at the initial time.

FIG. 9. Test case 5: Time evolution of the fractional error in

potential enstrophy from the C-grid calculation at various grid

levels from G4 (480-km resolution) to G7 (60-km resolution).
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the error for theA-grid is about two orders of magnitude

smaller than for the C-grid. This is due to the use of the

linear combination weights [defined in Thuburn et al.

(2009)] that ensures steady geostrophicmodes and energy

neutrality from the Coriolis force in linear equations.

The drawback is to sacrifice the local precision on

hexagon edges. This is likely a contribution to the non-

convergence of the L‘(h) at high grid resolution as

shown in test cases 2, 3, and 4.

4. Alternative methods and thoughts to improve
the C-grid scheme

Recently Peixoto (2016) shows that the nonconvergence

problem of the L‘(h) error norm with respect to the

number of grid points in the TRSK scheme can be re-

moved in TC2 if three modifications are applied (the

MODF-HCM-SCVTmethod in Peixoto 2016): (i) velocity

vector reconstruction using the method of Perot (2000),

(ii) an alternative Coriolis force term formulation, and

(iii) barycentric interpolation to improve the = � (hV)

term. The method by Peixoto (2016), however, degrades

the numerical stability. On the other hand, the methods

proposed by Gassmann (2013, 2018) shows promise to

alleviate the Hollingsworth instability (Hollingsworth

et al. 1983) present in the C-grid model. Here we first

analyze the consistency between the dynamic equa-

tion and the velocity linear interpolation method, then

propose a method that treats the Coriolis force term and

kinetic energy gradient on an equal footing.

a. A CD-grid concept to derive a Coriolis-force-term
formulation analogous to the TRSK method

One of the key concepts in the TRSK scheme is the

Coriolis force term reconstruction. It is analogous to

the velocity interpolation method, yet its proof is not

FIG. 10. Test case 6: Rossby–Haurwitz wave. The height fields calculated at (left) 14 and (right) 60 days using the (top) A-grid method

and (middle) C-grid method (without explicit numerical damping) are compared with the baseline solution from the (bottom) spectral

method (T511 with damping).
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explicit. An essential property that contributes to

the energy conservation is the antisymmetry of the

Wee0 matrix in Thuburn et al. (2009), We0e 52Wee0 .

Here we give a crude derivation for a C-grid Coriolis

force term based on a CD-grid concept. Our deri-

vation is straightforward without using the linear-

ized model, yet results are similar to the TRSK

formulation, which relies on a linearized shallow-

water model and imposes the energy neutrality condi-

tion (i.e., Coriolis force does not create or annihilate

energy):

heue
t 5�

e0

�
W

ee0
l
e0

d
e

�
1

2

�h
h

�e
1

�h
h

�e0� �
(hu

n
)e

0
, (4)

where h 5 f 1 j, W is the tangential velocity recon-

struction matrix from the normal velocity so that

ue
t 5 �

9–10

e051

�
W

ee0
l
e0

d
e

�
ue0
n , (5)

with le and de being the length of the cell edge e and the

distance between two cell centers sharing the edge, re-

spectively. We notice that the factor le0 /de can be ab-

sorbed into the Wee0 term and thus is omitted in the

following derivation.

Consider the following. If dynamic equations for the

two velocity components un and ut were to be evolved

(or integrated) simultaneously, then the Coriolis force

would not contribute to thework at each local point. The

Euler equations are

›u
n

›t
5hu

t
2 n̂ � =E and (6)

›u
t

›t
52hu

n
2 t̂ � =E . (7)

Here t denotes time; n and t denote, respectively, nor-

mal and tangential components; n̂ and t̂ are shorthands

for Ûn and k3 Ûn, respectively, where Ûn is the direc-

tion of the un component of the velocity vector (i.e.,

un 5 Ûn �V); ut 5 (k3 Ûn) �V; h 5 f 1 j and E 5 K 1
gh, with f, j, and K being the Coriolis parameter, vor-

ticity, and kinetic energy, respectively.

The assumption underlying the C-grid algorithm is

that the tangential and normal components of a vector

field on a cell edge can respectively be expressed as a

linear combination of the normal and tangential com-

ponents along the perimeter of two adjacent cells, be

it velocity, gradient force, or any other vector field.

Instead of using Eq. (5), here we start with its inverse

representation:

FIG. 11. Absolute errors in a few spatial operators for the velocity and depth field defined in appendix B [(left) gradient=h, (left center)

divergence = � (hV), (right center) vorticity =3V, and (right) Coriolis force term ( f1 z)k3V], calculated on the sphere from the (top)

A-grid and (bottom) C-grid methods at icosahedral grid level G4 (480-km resolution).
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ue
n 5 �

9–10

e051

~W
ee0u

e0
t , (8)

with e and e0 representing coupled edges from two ad-

jacent hexagons, and ~Wee0 being the coupling coefficient,

which is the inverse ofWee0 used in Fig. 1 and Eq. (24) in

Ringler et al. (2010).

Next we take partial time derivative on both sides

of Eq. (8), then substituting Eqs. (6) and (7) into the

resulting equations, we get (assuming ~Wee0 is time

independent)

heue
t 2 n̂e � =Ee 5�

e0
~W

ee0(2he0ue0
n 2 t̂e

0 � =Ee0) . (9)

Apparently, this equation can be satisfied if the Coriolis

force term and the pressure gradient term indepen-

dently satisfy the above interpolation formula on each

edge of the hexagon, e:

n̂e � =(K1 gh)e 5�
e0
~W

ee0 t̂e
0 � =(K1 gh)e

0h i
and (10)

heue
t 52�

e0
~W

ee0 he0ue0
n

� 	
. (11)

Here Eq. (10) belongs to the definition of the normal

and tangential component interconversion relationship

for vector fields; Eq. (11), which is similar to Eq. (4) of

the TRSK scheme could be used as the derived Coriolis

force term to be inserted into Eq. (6) to evolve un in time.

The proof that ~Wee0 52Wee0 is shown in appendix C.

We note that the common concept shared by Eq. (11)

and Eq. (4) is that the Coriolis force term (hut)
e must

be interpolated from (hun)
e0 as a whole and not that

the velocity ut can be reconstructed from un and then

feed back to (hut)
e. In other words, expressing Coriolis

force term as heue
t 5he�e0We,e0u

e0
n will simply fail the

Williamson TC2, as we find in numerical implemen-

tations (not shown here). Nevertheless, Eq. (4) ensures

cancellation of the work done by the Coriolis force on a

pair of nearest-neighbor edges while Eq. (11) does not.

Note that in deriving Eq. (9) we have combined the

velocity reconstruction relation [Eq. (8)] with the un–ut
dynamics [Eqs. (6) and (7)], which is reminiscent of a

CD-grid approach. Thus, the local relation V � (hk 3
V) 5 0 would hold on each cell edge and the Coriolis

force would be neutral to energy generation. In practice,

only the un dynamics equation [Eq. (6)] is evolved in

timewith the help of the Coriolis force term [e.g., Eq. (4)

in TRSK].We also note two facts: (i) as long as Eq. (9) is

satisfied, the proper time evolution of ut required by

Eq. (7) is guaranteed; hence Eq. (7) does not need to be

solved in the C-grid algorithm as well known (otherwise,

the method is called CD-grid); (ii) the functional form

for kinetic energy K will not affect the consistency be-

tween un and ut provided that the gradient term and the

Coriolis force term can be decoupled in Eq. (9). Here we

view Eq. (9) as a guide to understanding the self-

consistency between un, ut, and their coupling relation.

b. Our method: Combine kinetic energy gradient with
Coriolis force term for a linear combination
operation

The Hollingsworth instability is a numerical instabil-

ity mainly due to the numerical mismatch when sum-

ming the Coriolis force term and the kinetic energy

gradient [i.e., (= 3 V) 3 V 1 =(1/2)V2] to recover the

value of V � =V, especially for C-grid algorithms due to

incomplete velocity (kinetic energy) information on cell

edges (see Bell et al. 2017). The numerical noise therein

has implications for baroclinic instability. We propose

combining kinetic energy gradient with Coriolis force

term before performing the linear interpolation:

heue
t 2 n̂e � =Ke 52�

e0
~W

ee0 he0ue0
n 1 t̂e

0 � =Ke0� 	
. (12)

This will treat the two terms in a numerical consistent

manner. In the TRSK scheme, the Coriolis term is calcu-

lated from a linear combination process while the kinetic

energy gradient is obtained using FDM. These two terms

have different accuracy. The drawback of Eq. (12) is that

we abandon the direct calculation of the normal compo-

nent of kinetic energy gradient via FDM, but resorting to

the linear combination of its tangent components via the
~Wee0 matrix. In this way, accuracy of our method is directly

affected by accuracy of the ~Wee0 coefficients. The tangential

component of the kinetic energy gradient is computed on

edges belonging to a pair of polygons (hexagons or pen-

tagons), which requires computing kinetic energy on ver-

tices of these two adjacent polygons then taking FD for

derivatives. Therefore, for the edge e where the tendency

function, ›ue
n/›t, is to be obtained, we have to compute the

kinetic energy on 10 polygon-centers, which include both

the first and second nearest-neighbor polygon-centers to

the edge. The kinetic energy at polygon centers is com-

puted in the same way as in Ringler et al. (2010). In con-

trast, the gradient calculation used in TRSK involves

kinetic energy from only two polygon-centers. Also note

that in ourmethod the potential vorticity defined in TRSK

[Eq. (4)] is not used; only the absolute vorticity (h5 f1 j)

is computed, which slightly simplifies the calculation. A

detailed comparison on numerical stencils used in this

work versus the TRSK scheme is shown in Table 1.

1) TC2: A LARGE-SCALE GEOSTROPHIC FLOW

Figure 12 compares the method proposed from this

study [i.e., replacing Eq. (4) by Eq. (12) in the TRSK
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scheme] and the method of Peixoto (2016), in conjunc-

tion with the A-grid method of Tomita et al. (2001) and

the C-grid TRSK scheme using TC2. Among the three

C-grid approaches, the method of Peixoto (2016) gen-

erates the smallest error in both L2(h) and L‘(h) norm

for the depth field (measured at day 12) and these error

norms decrease linearly with the number of icosahedral

grid points. Both the TRSKmethod and our method fail

to converge the L‘(h) error norm at high resolution,

even though our method does reduce the magnitude the

TRSK L‘(h) norm without seriously degrading the

stability of the original scheme. We find that in running

TC2 the TRSK scheme is stable up to 2200 days, our

method can withstand the test up to 300 days, the A-grid

scheme can withhold a 200-day integration, while the

method by Peixoto (2016) can withstand 20-day simu-

lation even though its accuracy is the best among the

four methods compared.

2) TC2B: A THIN-LAYER STEADY STATE TO

CHECK BAROCLINIC INSTABILITY

Recently Peixoto et al. (2018) introduced a thin-

layer test to reveal the stability of the C-grid scheme.

This test is obtained, if the prognostic depth field

in the Williamson TC2 is taken as a background ter-

rain, upon which a thin layer (e.g., 0.01m) is added as

the true depth field while the velocity field remains

the same:

h*5 const(0:01m, e.g. ),

h
s
5 h

0
2
1

g

�
1

2
1

V

v

�
(v � r)2, and

V5v3 r . (13)

TABLE 1. Comparison of numerical stencils used in the TRSK

scheme vs this work, assuming the tendency (›un/›t) is computed

on an edge shared by two hexagons.

›un/›t

Use

PV

Symmetrize (h/h)e

with (h/h)e
0

No. of h

stencils

No. of un
stencils

TRSK Yes Yes 10 19

This work No No 2 41

FIG. 12. Test case 2: The error norms for the h field from four methods—the A-grid method of Tomita et al. (2001), the C-grid TRSK

scheme, the method of Peixoto (2016), and the method proposed in this work [Eq. (12)]. Shown are (a) time evolution for theL‘(h) norm,

(b) convergence of the L‘(h) norm with the number of icosahedral hexagonal cells, and (c) the convergence of the L2(h) norm.

Simulations were run without damping on grid level 5.
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Therefore, we call this thin-layer test TC2b. The var-

iable definitions are the same as TC2 in Eq. (3).

Running this thin-layer test with fluid depth of

0.01, 1, and 100m (Fig. 13) reveals that (i) the

smaller the fluid depth the more severe this nonlin-

ear instability will manifest itself on C-grid schemes,

and (ii) the A-grid method is less susceptible to this

instability test. Note that, when the fluid depth ap-

proaches zero (h* / 0), the full velocity tendency

term 2V3V1V �=V1=(ghs)[ 0 in this test design.

On C-grid, a major influence on the numerical error

in this test lies in the V � =V term, which is the

Hollingsworth instability, since the gradient term

from the FDM contains much less error (see the =h

term in Fig. 11). The A-grid stability for small fluid

depths (h 5 0.01 and 1m; Figs. 13a,b) can be ratio-

nalized, because the kinetic energy is accurately

defined at cell centers and the numerical treatment

of the vorticity and the kinetic energy gradient terms

has the same order of accuracy using the linear

barycentric interpolation method. Its high accuracy

is also enhanced by the homogeneity of the grid

generated by spring dynamics.

In Fig. 13c, at the finite fluid depth (h* 5 100m), the

error growth on A-grid when compared with C-grid is

severe when computed at grid level 5. Increasing the grid

resolution does help with the A-grid error growth

problem but is not a cure. For the case of h*5 100m, we

note that the error from the =(gh*) term begins to play a

role. We attribute the A-grid error growth in this case to

the general accuracy issue associated with the FVM on

A-grid, since Fig. 11 shows that the numerical accuracy

for the two operators [= � (hV) and =h] is slightly higher

by the FDM on C-grid than the FVM on A-grid. We

note that the emphasis of this test is on the small h* field

(h* / 0), which singles out the numerical error con-

tained in the V � =V term.

The method that we proposed fails to alleviate this

instability on the C-grid. We speculate that having

more accurate kinetic energy term [e.g., the work

of Gassmann (2013), Skamarock et al. (2012), and

Gassmann (2018)] and more accurate linear inter-

polation coefficients (the We,e0 term) associated with

the Coriolis term would help this instability test case

on C-grid. In Fig. 11, we have shown that on C-grid

the Coriolis force term interpolation (equivalent to

FIG. 13. TC2b: a steady-state thin-layer simulation with fluid depth (a) 0.01, (b) 1, and (c) 100 m, comparing the L2(h) error norm

(RMS error) due to the A-grid method by Tomita et al. (2001), the C-grid TRSK scheme, and the method proposed in this study at

grid level 5.
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velocity field reconstruction or the ut-un relation) is

not as accurate as other spacial derivatives obtained

from FVM or FDM.

5. The role of horizontal diffusion on model
simulations

Numerical diffusion or damping, for example,

using the second-order or fourth-order viscosity

term, is an indispensable part of the model for long

runs. We compare effects of horizontal diffusion on

A-grid and C-grid simulations in detail, including

which types of noise can be eliminated, how much

diffusion is needed (i.e., what the effects of under-

filtering and overfiltering are), how the outcome of

second-order diffusion compares with fourth order,

how accurate the numerical Laplace operators are

on A-grid versus C-grid, and how diffusion affects

energy conservation. Our major observations are

summarized below.

The A-grid model stability can be extended in TC2

from about 200 days to over 3500 days when filtered

with the fourth-order hyperviscosity term (Fig. 14).

The temporal fluctuation pattern and amplitude for

the L2(h) error norm (red lines) remain the same

after filtering. As pointed out by Tomita et al. (2002),

the Rossby wave error can be largely suppressed

using the most homogeneous grid optimized by

spring-dynamics, while gravity wave errors are in-

sensitive to such optimizations. (We used b 5 0.4 in

the grid generator.)

Horizontal diffusion also extended the C-grid stability

from about 2000 to 5000 days, although the TRSK

scheme is already superb for stability without diffu-

sion. Like the A-grid case, the computational modes

on C-grid, probably due to the fivefold symmetry in

grid structure, manifest itself in its original fluctua-

tion amplitude. The slight growth in the mean value

of L2 norm is attributed to either the intrinsic error

in the FV algorithm on the C-grid or the numerical

inaccuracy for the square of the Laplace operator

on the CVT grid. Overdamping on the C-grid using

e-folding time of 256 h can introduce larger errors

than using 4096 h. We compared the discretization

FIG. 14. Test case 2: Temporal variation of (a) theL2(h) error norm and (b) theL‘(h) norm

with and without horizontal diffusion (damping) up to 5000 days at grid level 5. The hyper-

viscosity coefficients (fourth order) are 3.49 3 1014, 4.37 3 1013, 2.72 3 1012 m4 s21 for

e-folding time t at 32, 256, and 4096 h, respectively.

TABLE 2. Comparison of the numerical accuracy of the Laplace

operator on the A-grid and C-grid against analytic solutions, where

r is the radial unit vector and v 5 6.06 3 1025 s21, as used in TC2

and TC5.

=2
2dv3 r (m21 s21) =4

2dv3 r (m23 s21)

A-grid ;10213–10212 ;10226

C-grid ;10213–10212 ;10222

Analytic 0 0
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procedure used in calculating =4V by Tomita et al.

(2001) on a spring dynamics grid with the one used by

Skamarock et al. (2012) on a CVT grid. The latter

uses =4V 5 =(=2d) 2 n›t=
2j, with V, d, and j being a

vector, its divergence, and its vorticity, respectively,

with t 5 r 3 n, and =2j being evaluated on hexagonal

vertices. When compared with =4(v 3 r) 5 0, accu-

racy of the C-grid numerical operator for =4V is four

orders of magnitude lower than the A-grid (10222 vs

10226 m23 s21), which is due to the nonoverlap of the

midedges for hexagonal grid with its triangular dual

grid (Table 2). The accuracy for the =2 operator is

comparable among the two methods.

The gridpoint noise that plagued the A-grid long time

integration results for TC5 has been effectively filtered

out as shown in Fig. 15. To ensure smooth isolines for

FIG. 15. Test case 5 (A-grid damping): effect of varying e-folding time (EF) on the simulated depth field at 90 days using the fourth-order

diffusion term at grid level 6.
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prognostic variables plotted on the sphere, the e-folding

time for wavelength of 2 times the average gridpoint

distance has to be less than 64h at grid level 6 on the A

grid. Nevertheless, the morphology of the isoline shapes

is sensitive to the choice of e-folding time as shown

in Fig. 15.

Since simulations of TC5 using the C-grid algorithm

barely show any gridpoint noise at 90 days (Fig. 6), the

necessity to apply horizontal diffusion becomes nonintuitive.

Here we compare results from second-order diffusion

with fourth-order diffusion using an e-folding time of

4096h, as it is unnecessary to apply heavy damping on

C-grid like the one required by the A-grid. Results from

Fig. 16 confirms that higher-order damping yields results

with higher resolution since the filtering is more effec-

tive for large wavenumbers. The sixth-order diffusion is

also commonly used in simulations (e.g., Tomita et al.

2002; Fig. 17).

When applying hyperviscosity to TC5 on the A-grid,

we find our results comparable to the published one by

Tomita et al. (2001). Even the C-grid and spectral model

(T213) results show that horizontal diffusion has per-

vasive effects on small features. At 90 days, the mor-

phology of the two valleys at 908W and 508N is also

sensitive to filtering strength. The e-folding times used

for the A-grid and C-grid at grid level 6 are 32 and

4096h, respectively. In the T213 spectral model run,

we used the hyperviscosity n 5 8 3 1012m4 s21 as in

Jakob et al. (1993). Figure 18 compares damping effects

(fourth order) on energy conservation. Longer e-folding

time tef means less damping and less energy loss, but on

theA-grid the weak damping (tef5 64 and 128 h) fails to

produce less energy loss than using tef 32 h, which may

be due to the residual numerical noise that is not filtered

out that still damps out the energy. On C-grid, the total

energy dissipation due to different e-folding times is

well distinguished (Fig. 18), confirming the low intrinsic

numerical noise owing to the TRSK scheme. The mag-

nitude of the dissipation on the C-grid appears under-

estimated when compared with the A-grid (e.g., tref 5
32 h), which is due to the error in the =4 operator

(Table 2). Overall, these comparisons show that the

A-grid scheme needs stronger filtering (larger diffusion

coefficient) than the C-grid to eliminate noise and sta-

bilize the solution for TC5, which means more energy

loss and potentially more accuracy loss. This may have

implications for climate simulations.

6. Progress in software optimization and
parallelization of A-grid and C-grid codes

The single software framework provides a unique

opportunity to compare and mutually enhance the

optimization and parallelization of the A-grid and

C-grid codes. The number of equations to be solved on

both grids is roughly the same (4 times the number of

icosahedral cells), yet the A-grid requires more opera-

tions for interpolation and calculating spatial deriva-

tives, which results in 24% more floating-point

operations on the A-grid than the C-grid (see Table 3).

As CPU run time in serial and in parallel modes can be

significantly affected by the software implementation

process, a definite conclusion on timing comparison

FIG. 16. Test case 5 (C-grid damping): Effect of (a) no dif-

fusion vs the (b) second-order and (c) fourth-order diffusion

on the depth field at 90 days with e-folding time of 4096 h at

grid level 6.
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between the two algorithms is out of reach without

qualifications. However, for our particular implemen-

tation, we find that the code speedup that results from

changing the Intel compiler option from ‘‘-O0’’ (no

optimization) to ‘‘-O3’’ (highly optimized) is 290-fold

for A-grid and 77-fold for C-grid, which we attri-

bute to better reuse of expressions for our A-grid

code. Therefore, even though the A-grid has more

FIG. 17. Test case 5 (damping effect): flow over an isolatedmountain. Shown is a comparison of the height field at 15 and 90 days calculated

using the (top) A-grid, (middle) C-grid, and (bottom) spectral transformmodel (T213), respectively, with andwithout fourth-order diffusion.

The e-foldings being used are 32 and 4096 h for the A-grid and C-grid, respectively, at grid level 6. The viscosities being used are 2.183 1013

and 1.71 3 1011m4 s21 for the A-grid and C-grid, respectively, at grid level 6. The diffusion coefficient used in T213 is 8 3 1012m4 s21.

FIG. 18. Total energy dissipation in test case 5 from the (a) A-grid vs (b) C-grid schemes af-

fected by EF with fourth-order diffusion at grid level 6.
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floating-point operations at -O0, after -O3 optimiza-

tion this A-grid code runs 67% faster than the C-grid

code. Nevertheless, we are still exploring new ways to

improve code optimization for both algorithms. Note

that, for code parallelization and timing purposes,

we add an artificial vertical dimension of 192 to

the shallow-water model solver to mimic the three-

dimensional effect.

The A-grid and C-grid modules in our framework

have been parallelized using the Scalable Modeling

System (SMS), a directive-based system utilizing

MPI (Govett et al. 2003). We are able to obtain

very good parallel efficiency (close to 1) on 16 000

CPU processors and on 800 GPU processors. More

details will be given in a future publication that

describes our software implementation.

7. Conclusions

This study implements and compares the shallow-

water model solver from the NICAM model (A-grid)

with the MPAS model (C-grid) in terms of accu-

racy, stability, error convergence with increasing

resolution, conservation properties, and diffusion

effects as summarized in Table 4. We emphasize

the following:

1) Continued effort is needed to improve the current

C-grid TRSK approach: the L2 error norm does not

decrease with increasing resolution in TC4, besides

the well-known L‘ norm problem and the issue of

the Coriolis force term, even though long time sta-

bility and conservation property on the C-grid are

exceptional.

2) The A-grid scheme passes the test cases without

reservation, showing an excellent error decay rate

with resolution. If no explicit damping is applied,

however, the gridpoint noise on the A-grid contam-

inates the solutions in long runs. Stronger diffusion is

needed on the A-grid than on the C-grid, which has

drawbacks on model accuracy and conservation

properties. After diffusion treatment, computa-

tional modes and relatively large error-fluctuation

amplitude still exist on the A-grid, which are less

prominent on the C-grid.

3) In the designed thin-layer geostrophic balance test

(TC2b), the A-grid scheme shows smaller error

and longer stability than C-grid methods, including

the TRSK scheme, the method of Peixoto (2016),

and the newly proposed method that combines the

Coriolis term with the kinetic energy term. This is

probably related to the Hollingsworth instability.

These alternative methods on the C-grid are not

recommended, because of the stability issue in the

method of Peixoto (2016) and the L‘ error prob-

lem in the newly proposed method. Better im-

provement is still needed for the C-grid.
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TABLE 3. Measure of the floating-point operations and CPU

time for the A-grid and C-grid serial codes running TC2 using

different compiler options within the same software framework.

Method Floating point operations Time (s) Time (s)

Compiler options -O0 -O0 -O3

A-grid 2.35 3 1011 2295.31 7.90

C-grid 1.89 3 1011 1019.57 13.21

TABLE 4. Summary of key observations from this comparative study; P denotes pass, F denotes fail, and Pr denotes pass with reser-

vation. The reference figure numbers are given together with the rationale for the assignment [e.g., the nonconvergence of L2(h) and

L‘(h) error norms with resolution].

Test Description Property A-grid C-grid Figures

TC0 Numerical operator Accuracy P F: Coriolis term Fig. 11

TC2 Geostrophic balance Accuracy P Pr: L‘(h) Figs. 2, 12

TC2b Thin layer (0.01–1m) Stability P F: L2(h) Fig. 13

TC3 Zonal flow with compact support Accuracy P Pr: L‘(h) Fig. 5

TC4 Forced nonlinear system with

translating low

Accuracy P F: L2(h) Fig. 5

TC5 Flow over mountain Accuracy P P Fig. 6

Energy conservation Pr: low accumulation P Fig. 8

Enstrophy conservation P P Fig. 8

TC6 Rossby–Haurwitz Accuracy P P Fig. 10

Diffusion TC2 Noise Pr: strong modes P Fig. 14

TC5 Accuracy P P Fig. 17

Energy conservation Pr: error when tef . 32 h P Fig. 18
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APPENDIX A

Formulas for Global Error Norms

The formulas used in this work for the three

global error norms—L1, L2, and L‘ for the scalar

field h and the vector field v defined in Williamson

et al. (1992)—are

L
1
(h)5

ð
jh2 h

T
j dVð

jh
T
j dV

,

L
2
(h)5

�ð
(h2 h

T
)2 dV

�1/2
ð
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T dV1/2

,
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‘
(h)5

max
V
jh2 h
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T
k
2
dVð

kv
T
k
2
dV

,
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, and

kvk
2
5 (v � v)1/2 .

Here the integral and max operators are defined on the

sphere, dV 5 sinududl is the area element, and the in-

tegrals extend over the whole sphere (surface area 4p).

The letter T denotes theoretical values. The dot product

v � v is performed on a tangential plane of the sphere.

APPENDIX B

Formulas for Spatial Operators of the
Test Function

Here we provide the analytic expressions for the

spatial derivatives of the chosen height and velocity

fields (h and V). They are used as baseline results to

extract the numerical errors arising in the A-grid and

C-grid schemes shown in Fig. 11:

a(l, u)5 sin(l) ,

b(l, u)5 cos(ml) cos4(nu) ,

h5 h
0
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0
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ê
l

�
2m

cos4(nu)

cos(u)
sin(l) sin(ml)

�

1 ê
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2 cos3(nu) sin(nu) sin(u)1n cos4(nu) cos(u)]

�
,

A5m
cos4(nu)

cos(u)
sin(l) sin(ml) ,

B5 4n cos3(nu) sin(nu) sin(l) cos(ml), and
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,

FIG. D1. TC5: (top) The 15-day simulation from this method using Eq. (12). Also shown is

the conservation of (bottom left) total energy (TE) and (bottom right) potential enstrophy

(PE) from the three methods at grid level 6.
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where a is the radius of Earth, m and n are parameters,

and the = operator acts on fields located on the two-

dimensional spherical surface. We used m 5 n 5 3

in Fig. 11.

APPENDIX C

Proof for ~Wee0 52Wee0

Here we show that the inverse matrix for the coupling

coefficients (Wee0) is equal to the additive inverse of the

matrix. The Helmholtz decomposition of a vectorV can

be written as

V5V
1
1k3V

2
, (C1)

whereV15=x andV25=c. Each of these three vectors

(V, V1, and V2) can have its own orthogonal decompo-

sition on the cell edge (i.e., V5 unn̂1 utt̂, where n̂ and

t̂ are shorthand for Ûn and k3 Ûn, respectively); Ûn is

the direction of the un component of the velocity vector

[i.e., un 5 Ûn �V; ut 5 (k3 Ûn) �V]. Through this nota-

tion we have un 5 u1n 2 u2t and ut 5 u1t 1 u2n. Each of

the three vectors can have its own vector field recon-

struction form, connecting its own un and ut using matrix

W or its inverse ~W. Now use the linear combination rule

to construct tangential component on edge e from its

adjacent normal components on edges e0. We get two

equations, one for vector V and the other for V1:

(u
1t
1 u

2n
)e 5 �

10

e051

W
ee0(u1n

2u
2t
)e

0
and (C2)

ue
1t 5 �

10

e051

W
ee0u

e0
1n . (C3)

Subtract the above two equations to obtain

ue
2n 52�10

e051Wee0u
e0
2t .

Since u2n and u2t can also be connected by the inverse

matrix elements ~Wee0 , we have

ue
2n 52�10

e051
~W

ee0u
e0
2t .

Hence ~Wee0 52Wee0 .

APPENDIX D

Energy Conservation from Using Eq. (12)

In Eq. (12), the new method that we introduced, the

Coriolis force term was not symmetrized as in Eq. (4)

(the TRSKmethod). FigureD1 shows the TC5 run using

our method at grid level 6. The h field from the 15-day

simulation is close to the TRSK results (top panel in

Fig. D1). The total energy evolution with time shows

significant deterioration from the C-grid TRSKmethod,

whereas the potential enstrophy conservation is less

affected since our method does not alter the method for

computing vorticity and has slight impact on depth field

(bottom panel in Fig. D1).
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